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The nonlinear Navier–Stokes equations governing steady, laminar, axisymmetric flow
past a deformable bubble are solved by the Galerkin finite-element method simul-
taneously with a set of elliptic partial differential equations governing boundary-fitted
mesh. For Reynolds number 20 � Re � 500, numerical solutions of spherical-cap
bubbles are obtained at capillary number Ca = 1. Increasing Ca to 2 leads to a
highly curved, cusp-like bubble rim that seems to correspond to skirt formation.
The computed steady, axisymmetric spherical-cap bubbles with closed, laminar wakes
compare reasonably with the available experimental results, especially for Re � 100.
By exploring the parameter space (for Re � 200), a sufficient condition for steady
axisymmetric solutions of bubbles with the spherical-cap shape is found to be roughly
Ca > 0.4. The basic characteristics of spherical-cap bubbles of Ca � 0.5, for a given
Re � 50, are found to be almost independent of the value of Ca (or Weber number
We ≡ Re Ca). At a fixed Re � 50, continuation by increasing Ca (or We) from a
spherical bubble solution cannot lead to solutions of spherical-cap bubbles, but
rather to a turning point at We slightly greater than 10 where the solution branch
folds back to reduced values of Ca (or We). Yet continuation by reducing Ca (or We)
from a spherical-cap bubble solution cannot arrive at a spherical bubble solution for
Re � 50, but rather at solutions with bubbles having more complicated shapes such
as a sombrero, etc. Without thorough examinations of the solution stability, multiple
steady axisymmetric solutions are shown to exist in the parameter space for a given
set of parameters.

1. Introduction
The behaviour of a gas bubble moving in a viscous liquid has been investigated

by numerous authors as a fundamental subject of fluid mechanics, because of its
relevance to various practical applications as well as its ubiquity in our everyday life.
An extensive literature review may be found in the article of Wegener & Parlange
(1973) and citations referred to therein. Driven by the buoyancy force, a bubble is
often experimentally observed to move at a constant terminal velocity after an initial
acceleratory transient (Haberman & Morton 1953; Batchelor 1967; Harper 1972;
Wegener & Parlange 1973; Clift, Grace & Weber 1978). Smaller bubbles moving
at lower terminal velocities exhibit nearly spherical shapes due to relatively strong
surface tension effects. With increasing bubble size, the terminal velocity increases
and the bubble shape becomes increasingly oblate. Large bubbles have been found
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to take an apparently ‘spherical cap’ shape, often with turbulent flow in the wake, as
first studied by Davies & Taylor (1950). Steady spherical-cap bubbles with laminar
wakes of toroidal vortices were observed for Re< 200 (e.g., Slaughter & Wraith 1968;
Wegener & Parlange 1973; Bhaga & Weber 1981).

With the deformable free surface, a gas bubble moving in a viscous liquid poses
an intrinsically nonlinear problem that is intractable with conventional mathematical
techniques. Early theoretical studies were limited to cases of very small bubble deform-
ations either at high Reynolds number (Moore 1959; 1965) or at low Reynolds number
(Taylor & Acrivos 1964; Brignell 1973). The potential-flow analysis of spherical-cap
bubbles by Davies & Taylor (1950) and Collins (1966) yielded a relationship between
the bubble terminal velocity and the radius of curvature of the front part of bubble
surface, with the spherical-cap shape assumed a priori and both fluid viscosity and
surface tension neglected. The terminal velocity formula of Davies & Taylor was
extended by Joseph (2003) to include the effects of fluid viscosity and surface tension
by applying the theory of viscous potential flow that assumes zero vorticity. Some
semi-empirical models were also provided in the literature (Parlange 1969).

The advent of modern high-speed computers has enabled development of various
numerical methods for ‘self-consistently’ solving complicated nonlinear free-boundary
problems such as moving bubbles in viscous liquids. By solving the Navier–Stokes
equations in boundary-fitted, orthogonal coordinates with a finite-difference scheme,
Ryskin & Leal (1984) and Christov & Volkov (1985) were able to compute the
steady-state flow field and bubble shape over a range of Reynolds number and
Weber number. For cases of Reynolds number Re � 20, the computed axisymmetric
shape of the bubble changes from spherical to oblate to spherical-cap with increasing
Weber number We. At higher Reynolds numbers (e.g. Re= 100 and 200), ‘disk-like’
and ‘saucer-like’ steady bubble shapes were predicted at We ≈ 10. Although their
numerical technique did not allow them to compute solutions for We> 10 when
Re � 50, Ryskin & Leal (1984) commented that the branch of solutions they obtained
does not seem likely to revert from the saucer-like bubble shape to the experimentally
observed spherical-cap bubble shape at larger We. The possibility of the onset of
‘shape instabilities’ was suggested, implying the non-existence of steady axisymmetric
bubble shapes above some critical Weber number.

Using a modified volume-of-fluid method incorporating the surface tension effect,
Chen et al. (1999) computed transient development of a bubble rising in a viscous
liquid with results showing spherical-cap shapes for Re < 50 that compare reasonably
with the experimental photographs of Bhaga & Weber (1981). With a coupled
level set/volume-of-fluid method, Ohta et al. (2005) also computed some cases of
spherical-cap bubbles showing reasonable comparison with a few experimental images
for Re < 50. In studying initial condition effects on axisymmetric bubble evolution
based on transient numerical simulations with the volume-of-fluid method, Ohta
et al. (2005) as well as Bonometti & Magnaudet (2006) indicated possibilities for
obtaining spherical-cap bubbles at a few relatively large values of Reynolds number,
such as Re ∼ 250, 600, and 900, with properly arranged initial bubble deformations.
Because of the transient nature of those volume-of-fluid simulations, whether those
‘large-Re’ spherical-cap bubbles correspond to steady-state solutions can only be
answered tentatively (especially with the experimental evidence by Bhaga & Weber
suggesting that spherical-cap bubbles of Re > 110 would develop unsteady wakes).
Computing solutions directly based on steady-state governing equations, although
not being able to reveal interesting dynamical processes, is an efficient way to study
rigorously the steady states of a system (which deserve special attention in view of
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their theoretical and practical importance) and can also discover the unstable steady
states with properly implemented solution branch tracking methods. To date, whether
the experimentally observed spherical-cap bubble shape (especially that with steady,
laminar wake) for Re � 50 corresponds to a solution branch of strictly steady axisym-
metric Navier–Stokes equations for incompressible fluid flow remains open for further
investigation.

The goal of the present work is to provide a definite answer to the existence of
steady axisymmetric solutions for spherical-cap bubbles by computing solutions over
large ranges of Reynolds number (i.e. 20 � Re � 500) and Weber number (up to
We =500). A Galerkin finite-element method with full Newton iterations is used
for simultaneously solving the steady axisymmetric Navier–Stokes equations for
incompressible flow field together with the elliptic mesh generation equations for
tracking the unknown bubble shape. Because the deformable bubble surface coincides
with a finite-element mesh line, the computational method used here with a boundary-
fitted mesh has been considered to offer the highest accuracy for the present type of
problem (as noted by Tryggvason et al. 2001).

In what follows, the problem statement and solution method are presented in § 2,
whilst computations of solutions of spherical-cap bubbles with specific continuation
strategies are described in § 3. Steady-state solutions corresponding to bubbles with
various shapes are explored in § 4 where the condition for solutions of bubbles with
the spherical-cap shape is inferred, and the concluding remarks are provided in § 5
with suggestions for future investigations.

2. Problem statement and solution method
2.1. Governing equations

The problem considered here is a gas bubble of constant volume (4π/3)R3 moving
at a constant terminal velocity U along the centreline of a cylindrical container filled
with a Newtonian liquid of density ρ and dynamic viscosity µ. The surface tension
at the gas–liquid interface is denoted as γ and assumed to have a constant value.
The viscous fluid flow is assumed to be incompressible, laminar, and axisymmetric.
The radius of the cylindrical container Rc is set at one order of magnitude greater
than R (i.e. Rc =10R as often used in experiments, e.g. Bhaga & Weber 1981), so the
container wall is expected to have inconsequential effects on the bubble behaviour
when the Reynolds number Re ≡ 2ρRU/µ is no longer small (Van Dyke 1975), as in
the cases studied here. In view of the fact that the density and viscosity of gases are
typically orders of magnitude less than those of liquids, the hydrodynamic stresses
due to the flow of gas inside the bubble is completely ignored in the present work.

The axisymmetric fluid flow of the liquid is governed by the steady incompressible
Navier–Stokes equation system

1

2
Re v · ∇v = ∇ · T with T ≡ −pI + ∇v + (∇v)T (2.1)

and

∇ · v = 0, (2.2)

where the flow velocity vector v and pressure p are made dimensionless by measuring
them in units of U and µU/R, respectively. Here R is used as the scaling length for
non-dimensionalization, I denotes the identity tensor, and the superscript ‘T ’ stands
for the transpose.
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For computational convenience, the mathematical problem is described in a refe-
rence frame moving with the bubble with the coordinate origin fixed at the centre
of mass of the bubble. A cylindrical (z, r)-coordinate system is used with the z-axis
coinciding with the axis of symmetry and pointing in the same direction as the far-
field flow velocity. Thus, at the bubble surface, conservation of momentum is satisfied
by imposing the traction boundary condition

n · T =
1

Ca

[
dt
ds

+
n
r

dz

ds

]
+ pan − St zn on Sf , (2.3)

where Ca ≡ µU/γ is the capillary number, the local unit normal vector n at the free
surface points from the liquid into gas, the local unit tangent vector t points in the
direction of increasing s along the boundary and relates to n in such a way that
n × t = eθ (according to the right-handed coordinate system (z, r, θ)). The uniform
excess pressure inside the bubble pa is solved as an unknown to satisfy an overall
constraint that the volume enclosed by the free surface Sf does not vary, namely,∫

Sf

r2 dz

ds
ds =

4

3
. (2.4)

The Stokes number St ≡ ρ g R2/(µU ) represents the buoyancy force and is also solved
as an unknown to satisfy another overall constraint that the ‘centre of mass’ of bubble
remains at the coordinate origin ∫

Sf

z r2 dz

ds
ds = 0. (2.5)

As might be noted, the gravitational (body) force term does not explicitly appear
in (2.1) because the hydrostatic pressure in the bulk liquid has been lumped in the
generalized pressure p. Hence, the hydrostatic pressure effect due to buoyancy force
only appears in the boundary condition (2.3) through St.

Moreover, the flow velocity field must satisfy

n · v = 0 on Sf and r = 0, (2.6)

due to the kinematic condition at the free surface Sf , and the symmetry condition at
the axis of symmetry (r = 0). In addition, the stress-free symmetric condition at the
axis of symmetry (r = 0) can be expressed as

ezer : T= 0 at r = 0, (2.7)

where ez and er denote the unit vectors in the z- and r-directions, respectively. Because
of the axisymmetry, any components of T associated with θ should vanish.

At the cylindrical container wall (r = 10) and the upstream (or ‘inlet’) boundary
located at z = −10, the Dirichlet type of condition for far-field uniform flow velocity
is imposed, i.e.

v = ez on r = 10 and z = −10. (2.8)

At the downstream (or ‘outflow’) boundary (z = 20), the fully developed flow condition
for hydrodynamic stresses is used, i.e.

ezer : T =
∂vz

∂r
and ezez:T = −po on z = 20, (2.9)

where the value of po is set to zero in the present work, as a natural choice.
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2.2. Computational solution method

To compute numerical solutions of the present problem, the nonlinear system of
partial differential equations (2.1)–(2.9) is discretized by Galerkin’s method of weighted
residuals with finite-element basis functions (see Strang & Fix 1973). In doing so, the
problem domain (in zr space) is divided into a set of quadrilateral elements. On each
element, which is mapped onto a unit square in the ξη (computational) domain, the
unknown flow velocity is expressed in an expansion of biquadratic basis functions,
while the pressure field is in an expansion of linear discontinuous basis functions
to avoid over-constraint problems (Huyakorn et al. 1978). The finite-element mesh
points around the deforming bubble surface are determined by a pair of elliptic
partial differential equations (see Thompson, Warsi & Mastin 1985; Christodoulou
& Scriven 1992; de Santos 1991)

∇ · (Dξ ∇ξ ) = 0, ∇ · (Dη∇η) = 0, (2.10)

where the ‘diffusion’ coefficients Dξ and Dη are locally adjustable parameters
prescribed for generating a desirable distribution of mesh points in the problem
domain. The mesh equations (2.10) can also be discretized by the Galerkin finite-
element method. As described by Christodoulou & Scriven (1992), using the
subparametric mapping for the mesh points can reduce the computational burden
of solving the mesh equations (2.10) and is therefore adopted in the present work.
Appropriate boundary conditions for (2.10) need to be specified to complete the
mathematical description. For example, at the bubble surface, one of the boundary
conditions for the mesh equations (2.10) is given by (2.6) along Sf and the other
enforces the orthogonality of mesh lines to the free surface.

As a well-established approach,† the set of nonlinear algebraic equations of
Galerkin’s weighted residuals is simultaneously solved by Newton’s method of
iterations (Ortega & Rheinboldt 1970). At each Newton iteration, the Jacobian
matrix of sensitivities of residuals to unknowns is evaluated with the values of
unknowns determined in the previous iteration. The resulting linear algebra system is
then solved by direct factorization of the Jacobian matrix with a modified version of
Hood’s frontal solver (Hood 1976). The iteration is continued until the L2-norm of the
residual vector becomes less than 10−8. Newton’s method usually renders quadratic
convergence to the solution, if the initial estimate of the solution falls within the
domain of convergence and the Jacobian matrix is implemented correctly.

The typical mesh used in the present problem is shown in figure 1, which contains
1712 elements and 7051 nodes, with 129 nodes along the bubble surface. Although
coarser meshes used in previous studies of the similar problems (e.g. Ryskin & Leal
1984; Bozzi et al. 1997) were shown to be sufficient for most free-surface deformations,
the present fine mesh is especially tested for adequately resolving large curvatures
near the rim of spherical-cap bubbles. When computing more challenging cases such
as those of spherical-cap bubbles at Re � 200, an even finer mesh with 161 nodes
along the bubble surface is employed so as to avoid mesh-dependence problems.

It is known that the quality of finite-element computational results relies on the
quality of the mesh. Noteworthy here is the importance of neglecting the fluid-dynamic

† The computational code used here was progressively developed by the author from an original
version of Coating Flows Application Library in Professor L. E. Scriven’s group at the University
of Minnesota, which was used for (and attested with) various studies involving viscous fluid flows
with free surfaces, such as Feng & Scriven (1992), Feng & Basaran (1994), Bozzi et al. (1997) and
Feng (1998).
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(a)

(b) (c)

Figure 1. Finite-element mesh of the problem domain (as exemplified by the case of Re =100
and Ca = 2): (a) entire problem domain; (b) detail around bubble; (c) detail around highly
curved bubble rim.

effect of the gas phase inside the bubble. It enables computation of solutions with
a highly distorted free surface to which the mesh lines can remain orthogonal (see
figure 1). A high-quality quadrilateral mesh that can be retained even around the
cusp-like point on a spherical-cap bubble rim would be very difficult to obtain if the
flow field inside the bubble were also discretized and computed (e.g. Bozzi et al. 1997).

3. The solutions of spherical-cap bubbles
The successful solution of nonlinear equations by Newton iterations relies on

sufficiently accurate initial estimates of the solution. If a solution for a given
set of parameters is obtained, it can be used as the initial estimate for another
nearby solution corresponding to one or more parameters being varied slightly in
the parameter space. Thus, by varying the parameters in small steps from a ‘first’
solution, a family of solutions can be traced, in the sense of so-called zeroth-order
continuation. Although more sophisticated continuation strategies (Riks 1972; Keller
1977) can be implemented for more efficient solution branch tracing, simple zeroth-
order continuation can be quite adequate for computing the solutions of spherical-cap
bubbles in this section.
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As might be noted, Reynolds number Re and capillary number Ca are the only
two independent parameters in the present problem free for specification. Therefore,
continuation by either varying Re while holding Ca fixed, or varying Ca while
holding Re fixed, becomes straightforward. Here, the choice of Re and Ca as
primary parameters to vary comes mainly from the consideration of computational
convenience in exploring the steady-state solution space, with St determined as
part of the solution. Once Re, Ca, and St are given, all other relevant dimensionless
parameters such as drag coefficient CD , Froude number, Bond number, etc., associated
with a solution can all be calculated in terms of them. For example, the Weber
number We ≡ 2ρU 2/γ (used in Ryskin & Leal 1984) can be expressed as Re Ca.
Because of the non-dimensional form of governing equations adopted in the present
work, each solution corresponding to a set of specified Re and Ca can represent
numerous seemingly different fluid systems and bubble sizes by virtue of dynamical
similarity (as discussed by Batchelor 1967). For instance, the terminal velocity U

and size R of a bubble represented by a computed solution can be determined as
U =

√
Re/2 [g γ Ca/(ρ St)]1/4 and R =

√
γ Ca St/(ρ g) with fluid viscosity satisfying

µ = γ Ca
√

2/Re [ρ St/(g γ Ca)]1/4. Thus, a series of solutions at various values of Re
and Ca can be used to describe bubble behaviour in a large range of experimental
conditions.

A convenient first solution for the present problem is obtained by solving the
equation system of diminishing nonlinearity, such as that for Re =0 and Ca = 0.01
(as a case almost equivalent to Stokes flow past a spherical bubble). Because of the
container wall located at r =10, the computed St (≡ρgR2/(µU )) is 3.49219, which
is very close to 3.48972 – the analytical result of Haberman & Sayre (1958) for a
spherical bubble moving in a cylindrical tube of radius 10 times the bubble radius.
Thus, the upstream and downstream boundaries in the present problem domain are
believed to be far enough even for Stokes flow at Re = 0, which is expected to be
most sensitive to the errors in far-field boundary conditions.

3.1. Solutions of 20 � Re � 500 at fixed Ca = 1

As is well documented by Ryskin & Leal (1984) and repeated by Sugiyama, Takagi &
Matsumoto (2001), the spherical-cap shape of a bubble is well developed at Re =20
and We � 15. But for Re � 50, increasing We does not seem to lead to the solutions
that correspond to the spherical-cap bubble (Ryskin & Leal 1984; Christov & Volkov
1985; Ohta et al. 2005). Therefore, the attention here is mainly focused on solutions
of spherical-cap bubbles for Re> 20 starting from the solution of Re =We = 20.

Continuation from the solution of Re = 0 and Ca =0.01 to that of Re= 20 and
Ca =0.01 is simply done by using the former as the initial estimate. The solution for
Re = 20 and Ca = 0.01 is obtained with five Newton iterations. Because the bubble
shape is essentially spherical (at We =0.2 with an aspect ratio α ≡ 2rmax/(zmax − zmin)
of 1.0217, where rmax, zmin and zmax denote the maximum r-coordinate and minimum
and maximum z-coordinate values of deformable bubble surface), the computed drag
coefficient

CD ≡ 16St

3Re
(3.1)

for this case is 1.45235. Holding Re fixed at 20 and gradually increasing the value
Ca to 0.75, a solution of We= 15 is obtained, as shown in figure 2(a), which appears
to be in good agreement with the result of Ryskin & Leal (1984), who also showed
a close comparison with the experimental photograph by Hnat & Buckmaster (1976)
for Re = 19.4 and We= 15.3. For the convenience of comparison and future reference,
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Figure 2. Streamlines and bubble shape for (a) Re= 20 and Ca =0.75 (We= 15, Mo = 0.0545),
(b) Re= 20 and Ca = 1 (We= 20, Mo = 0.1312), (c) Re= 40 and Ca = 1 (We= 40, Mo = 0.0577),
(d) Re= 60 and Ca= 1 (We=60, Mo = 0.0355).

the contour values for streamfunction shown in figures of the present work are 0,
±0.001, ±0.002, ±0.005, ±0.01, ±0.02, ±0.05, ±0.1, etc., like those in Ryskin & Leal
(1984). The drag coefficient computed here is CD = 3.4409, whereas Ryskin & Leal
(with a much coarser mesh) obtained 3.55 and Hnat & Buckmaster 3.44.

If Ca is further increased to 1 (We =20) and 2 (We = 40), the computed drag
coefficient, respectively, becomes CD = 3.49864 and 3.54931, whereas the empirical
formula of Bhaga & Weber (1981) for high Morton number (Mo ≡ (3/4)CDWe3/Re4 =
(3/4)CDCa3/Re > 4 × 10−3)

CD−emp =

[
(2.67)0.9 +

(
16

Re

)0.9]1/0.9

(3.2)

yields a value of 3.68994 for drag coefficient at Re =20. As shown in figure 2(b), the
bubble of Re = 20 and We = 20 has greater surface curvature at the rim with enlarged
recirculation zone than that of We= 15 (see figure 2a). This observation agrees with
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the mechanism discussed by Ryskin & Leal (1984) that in the low-Re range, i.e.
Re � 20, the bubble shape in an overall sense does not differ much with the variation
of We for large We (at fixed Re). However, the surface curvature at the rim and the
amount of vorticity in the wake may still increase with We.

With Ca held at a fixed value of 1, the solution of Re =We = 40 can be obtained
using the solution of Re= We= 20 as the initial estimate for Newton iterations. As
expected, the recirculation zone with the bubble of Re = We= 40 in figure 2(c) is
greater than that of figure 2(b) for Re = We= 20. Further increasing Re to 60 at
fixed Ca = 1 yields the solution shown in figure 2(d) (for We =60). It is interesting to
note that the spherical-cap bubble shape at Re = We= 40 and 60 is almost invariant,
albeit with visually undetectable, highly localized differences. However, the size of the
recirculation eddy in the wake increases with Re and We.

To evaluate mesh-sensitivity of the computed results, the value of drag coefficient
CD is examined with difference meshes. For the case of Re= We =100, the value of
CD is computed as 2.53106 with the mesh (as in figure 1) having 129 nodes along the
free surface. If meshes with 97 nodes and 161 nodes on the bubble surface were used,
the results would be 2.53003 and 2.53017, respectively. Mesh-sensitivity is reduced
with decreasing Re. For example, at Re =We = 50, the computed values of CD become
2.94747, 2.94701, and 2.94653, with meshes having 97, 129, and 161 nodes on the
bubble surface, respectively. At Re= We= 200, however, the computed CD values
become 2.15635, 2.12286, and 2.11817 with increasing number of nodes on bubble
surface. If Re= We is increased to 500, the computed CD values are 1.92713, 1.82347,
and 1.80338 when refining the mesh. Thus, using the finest mesh (with 161 nodes
along bubble surface) for computing cases of 200 � Re � 500 is expected to keep the
variation of CD less than 1%. For cases of Re � 100, the mesh shown in figure 1 can
be quite adequate for accurate computations.

The present finite-element code can be used to compute cases of 20 � Re � 500, at
a fixed value of Ca = 1 without exhibiting any numerical difficulties. Figures 3(a)–3(c)
show the streamlines and bubble shape for Re = We= 100, 300, and 500, respectively.
The bubble of Re =We = 100 in figure 3(a) appears to retain the same spherical-cap
shape as those in figures 2(c) and 2(d) for lower Re= We, except for the larger
recirculation eddy in the wake. As the value of Re = We is increased to 300 and 500
the size of the recirculation eddy is further enlarged, while the bubble still exhibits
the same spherical-cap shape (see figure 3). With the value of Re = We increased from
300 to 500, the streamwise length of the recirculation eddy does not seem to change,
but width of the recirculation eddy still increases slightly.

The experimental data summarized by Bhaga & Weber (1981) show that the width
of wake increases with Re up to Re ∼ 100, with wake width measured in units of
bubble diameter for a wide range of Mo values approximately equal to 1.2, 1.7, and
2.3 at Re =20, 50, and 100, respectively. Evaluated from the computed results at
Re = 20, 50, and 100, the corresponding values of the wake width (in units of bubble
diameter) are found about 1.31, 1.88, and 2.50. The values of the wake length in units
of bubble diameter shown by Bhaga & Weber are approximately 1.0, 2.0, and 3.0
for Re =20, 50, and 100, respectively, whereas those from computed results indicate
about 0.979, 2.33, and 3.33. Thus, the computed bubble wake structures seem to
compare reasonably with the experimental data presented by Bhaga & Weber (1981).

The spherical-cap appearance of the bubble shape found in experiments led
Davies & Taylor (1950) to measure the actual surface profile from the photographic
images for comparison with a circular arc. They concluded that ‘the upper part of the
bubble is a portion of a sphere within the experimental error.’ However, the analyses
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Figure 3. Streamlines and bubble shape for (a) Re= 100 and Ca = 1 (We= 100, Mo = 0.0190),
(b) Re= 300 and Ca = 1 (We= 300, Mo = 4.78 × 10−3), (c) Re = 500 and Ca =1 (We=500,
Mo = 2.71 × 10−3).

of Collins (1966) and Joseph (2003) suggest that the front portion of the bubble
may not be an exact circular arc. If the front part (or upper part, as referred to by
Davies & Taylor), of the bubble surface indeed fits a portion of a sphere, the radius of
curvature of computed ‘spherical-cap’ bubble surface may be simply evaluated based
on two bubble-surface nodal positions (zstag, 0) (where zstag denotes the z-coordinate
value of the front stagnation point) and (zn, rn) by

Rcap =
(zn − zstag)

2 + r2
n

2(zn − zstag)
, (3.3)

where (zn, rn) can be any nodal coordinates on the front part of the bubble surface
other than (zstag, 0). Equation (3.3) is derived using the formula for a circle (z − zc)

2 +
r2 = R2

cap, with zc and Rcap determined by two given points on the circle. Unfortunately,
a simple test for the case of Re= We= 100 with several selected nodes on the front
part of the bubble surface shows that the calculated Rcap with (3.3) varies from
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Re CD CD−emp Mo rmax zmin zmax Rcap zwake

20 3.49864 3.68994 0.1312 1.427 −0.634 0.429 1.624 2.242
30 3.24491 3.37466 0.0811 1.534 −0.593 0.411 1.797 3.271
40 3.07812 3.21250 0.0577 1.603 −0.568 0.395 1.935 4.128
50 2.94701 3.11306 0.0442 1.652 −0.551 0.378 2.048 4.856
60 2.83816 3.04558 0.0355 1.688 −0.537 0.362 2.144 5.484
80 2.66503 2.95947 0.0250 1.739 −0.516 0.335 2.313 6.507

100 2.53106 2.90658 0.0190 1.775 −0.500 0.315 2.457 7.295
200 2.11817 2.79653 7.94 × 10−3 1.887 −0.450 0.276 3.010 9.383
300 1.91068 2.75778 4.78 × 10−3 1.951 −0.422 0.264 3.404 9.852
400 1.82487 2.73773 3.42 × 10−3 1.980 −0.409 0.255 3.612 9.787
500 1.80338 2.72540 2.71 × 10−3 1.984 −0.405 0.247 3.667 9.783

Table 1. Values of CD [compared with CD−emp in (3.2)], Mo = (3/4)CD/Re, rmax, zmin, zmax,
Rcap, and zwake for 20 � Re � 500 at Ca = 1 (We= Re).

2.3838 (with the node at the bubble rim) to 2.6853 (with the node next to the front
stagnation point), indicating that the front part of the bubble surface is not exactly a
portion of a sphere. Therefore, the value of Rcap in the present work is evaluated by
fitting the bubble front part of nodal position values to a sphere with a least-squares
method.† For example, the value of Rcap for Re = We= 100 is obtained as 2.457 by
the least-squares evaluation. The values of variance‡ are found to be typically less
than 10−4 when evaluating Rcap for various Re and We, suggesting that the steady,
axisymmetric solutions of bubbles presented here (for We � Re) indeed exhibit the
profile with the front part quite close to a portion of a sphere.

Table 1 shows the computed values of CD compared with the empirical formula
of Bhaga & Weber (1981) given in (3.2); the radius of bubble cross-section rmax (i.e.
2rmax represents the maximum transverse, dimension); the minimum and maximum
z-coordinate values on the bubble surface zmin and zmax, the radius of the spherical
cap Rcap, and the z-value at the axis of symmetry zwake with vz =0 indicating the end
of the recirculation zone in the wake, for 20 � Re � 500 at fixed Ca =1.

Although the computations of steady, axisymmetric solutions can be extended up to
Re = 500 and greater at Ca = 1, many experiments indicated that bubbles with closed,
laminar toroidal wakes may only be observed for Re< 200 (Wegener & Parlange 1973;
Hnat & Buckmaster 1976). For example, the results of Wegener & Parlange (1973)
suggest that instability may set in when Re > 180, whereas Bhaga & Weber (1981)
found the wake behind the bubble becomes open and unsteady for Re > 110. There-
fore, the computed solutions here for Re> 200 are not expected to provide predictions
of real-world observable phenomena, but rather to satisfy theoretical curiosities.

In general, the computed CD seems to be lower than CD−emp. This may be attributed
to the fact that a small amount of surfactant or other impurities, which is usually
difficult to eliminate in experiments, can increase the drag force on bubbles (as
discussed by Levich 1962, Levich & Krylov 1969, and computationally shown by
Sugiyama et al. 2001). But the trend of discrepancy increases with Re = We is still
somewhat puzzling. According to table 1, however, the agreement between CD and

† By solving for Rcap and zc to minimize
∑

[R2
cap − (zn −zc)

2 −r2
n ]

2, where the summation includes
all the nodes from the stagnation point to that corresponds to rmax.

‡ Defined as
∑

[Rcap −
√

(zn − zc)2 + r2
n ]

2/N , where N is the number of participating nodes from
that at the front stagnation point to the one corresponding to rmax.
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CD−emp actually appears reasonable for Re � 100 (with a difference of less than 15% at
Re= 100). Hence, the significant difference between CD and CD−emp for Re> 100 may
be explained by the unsteady wakes observed by Bhaga & Weber (1981) for Re > 110,
which is expected to lead to a quite different hydrodynamic stress distribution around
the bubble surface from that of the steady, axisymmetric solutions computed in the
present work.

Based on the theory of viscous potential flow (v.p.f.), Joseph (2003) derived a drag
law for large Mo with an elegant form:

CD−v.p.f. =
1

Rcap

(
6 +

32

Re Rcap

)
. (3.4)

Without general information about Rcap for various values of Re, Joseph (2003) used
the information of Davies & Taylor (1950) at the asymptotic large-Re limit to obtain

C̃D−v.p.f. = 0.445

(
6 +

32

Re

)
, (3.5)

which is found to predict slightly lower values but generally is in very good agreement
with (3.2) for a large range of Re from 10−1 to 103. Substituting the computed values
of Rcap at various Re from table 1 into (3.4) yields CD−v.p.f. =4.301, 3.082, 2.495,
2.011, and 1.641, respectively, at Re = 20, 50, 100, 200, and 500, whereas (3.5) yields
C̃D−v.p.f. = 3.382, 2.955, 2.812, 2.741, and 2.699. The agreement between the presently
computed CD (see table 1) and Joseph’s (3.4) appears to be excellent for Re> 40
(up to 500), especially for 50 � Re � 200. Unlike CD−v.p.f., however, C̃D−v.p.f. (given in
(3.5)) compares better with presently computed CD for smaller Re, with discrepancy
increases at larger Re (similar to (3.2)).

It is interesting to note that the variation of CD is drastically reduced for Re � 100.
For example, for 100 � Re � 200 the value of CD varies no more than ±10%.
Wegener & Parlange (1973) summarized experimental results indicating that the
Froude number Fr ≡ 2

√
2/(3CD) becomes almost a constant of a value about unity

for Re � 100. Based on the computed CD values in table 1 for Re =100 and 200, the
Froude number takes values of Fr = 1.026 and 1.122, respectively.

From the values of rmax and Rcap provided in table 1, the value of the so-called

cap angle θm can be calculated by sin−1(rmax/Rcap). For example, the cap angle for
Re= We= 20, 50, 100, and 200 are θm =61.49◦, 53.77◦, 46.26◦, and 38.82◦, respectively.
The trend of θm decreasing with Re and approaching an asymptotic value at large Re
seems to agree with the experimental observations suggesting an asymptotic value of
θm for Re > 100 between 40◦ and 55◦ (see Wegener & Parlange 1973).

In their attempt to gain a basic understanding of a spherical-cap bubble, Davies &
Taylor (1950) derived a relation between the bubble terminal velocity and the radius
of curvature of the frontal surface based on inviscid potential-flow approximation,

U 2 =
4

9
gRRcap, (3.6)

where Rcap is computed here as a dimensionless variable measured in units of R. In
terms of the dimensionless parameters in the present work, (3.6) can be rewritten as

We= 8
9
St Ca Rcap = 1

6
CDReCa Rcap,

which leads to

CDRcap = 6. (3.7)
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Using the values of CD and Rcap in table 1, the values of CDRcap for Re= We= 20, 50,
100, and 200 are found as 5.682, 6.035, 6.219, and 6.376, respectively. The agreement of
present results for spherical-cap bubbles with steady laminar wake with the prediction
of Davies & Taylor (1950) is not unreasonable; and the general agreement can be
further improved if the higher-order correction of Collins (1966), i.e. CDRcap = 6.273,
is used, especially for 50 � Re � 200. Yet the potential-flow approximation used by
Davies & Taylor (1950) and Collins (1966) is supposed to be more applicable to the
spherical-cap bubbles at much larger Re with turbulent wakes. According to Joseph’s
(2003) viscous potential flow formula (3.4), however, the value of CD−v.p.f.Rcap should
be equal to 6+32/(Re Rcap), which leads to 6.985, 6.313, 6.130, and 6.053, respectively,
at Re = 20, 50, 100, and 200; only slightly differing from the corresponding CDRcap

values, except for smaller Re such as Re = 20, when the difference between CD and
CD−v.p.f. becomes rather significant. But with (3.5) the value of C̃D−v.p.f.Rcap should
be simply given by 0.445 Rcap(6 + 32/Re), which yields 5.492, 6.051, 6.910, and 8.251,

respectively, at Re = 20, 50, 100, and 200. Good agreement between C̃D−v.p.f.Rcap and

CDRcap for Re =20 and 50 is not surprising because the value of C̃D−v.p.f. compares
better with CD in that range of Re.

3.2. Solutions of Ca > 1

Here, the steady-state spherical-cap solutions of We >Re for Re � 200 are computed
by increasing Ca in small steps at a fixed value of Re from the solutions of Ca =1
(i.e. cases of We = Re). Figure 4 shows a couple of solutions at Re= 20 for We =40
(Ca = 2) and 60 (Ca =3), which illustrates the local curvature increase at the rim of
bubble with increasing We. In fact, the local curvature at the bubble rim becomes
so large for the case of We= 60 (figures 4c, 4d) that the bubble rim appears to be
cusp-like. Further increasing We after the apparent cusp formation at the bubble
rim makes it difficult to compute a converged solution. Even sometimes converged
solutions can be computed at much greater We (i.e. Ca � 2), the numerical accuracy
of the result becomes questionable due to the concern of inadequately resolved local
curvature with a conventional finite-element mesh. Therefore, no attempt is made
here to compute solutions for Ca greater than that corresponding to apparent cusp
formation at the bubble rim.

The trend of cusp formation at the bubble rim is further illustrated in figures 5
and 6 at Re = 50 and 200 for Ca = 1 and 2, where the cases of Ca = 1 show that the
bubble rim has finite curvature and the cases of Ca = 2 show cusp formation. While the
general bubble shape appears unchanged with increasing Ca (and We) at fixed Re,
the cusp-like tip, locally at the bubble rim for increased Ca, bends downstream,
suggesting a tendency to skirt formation. For a given Re, increasing Ca corresponds
to increasing the ratio of viscous force to capillary force, to consistent with the
discussion of Hnat & Buckmaster (1976) on skirt formation mechanisms. In fact,
Hnat & Buckmaster (1976) determined the skirt formation criterion as Ca ≈ 2.3 based
on their experimental data for Re > 50, comparing well with the present computational
finding that suggests skirt formation at Ca > 2 for Re � 50. In a ‘shape regime’ map
for bubbles in liquids in terms of the Eotvos number Eo (≡ (3/4)CDWe, also called the
Bond number) and Re, Bhaga & Weber (1981) indicated skirt formation in parameter
ranges of 10 � Re � 50 and Eo > 200 (i.e. Ca > 3.7 for Re ∼ 20 and Ca > 1.8 for
Re ∼ 50), which seems to be quite consistent with the present results.

For convenience of comparison, the computed values of CD , Mo, rmax, etc., for a
few selected cases of We = 2Re are provided in table 2. The computed characteristic
values in tables 1 and 2 indicate that the values of rmax and zmax increase with We
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Figure 4. Mesh around bubble surface of Re =20 with different magnifications for (a),
(b) Ca = 2 (We= 40), and (c), (d) Ca = 3 (We=60).

Re CD Mo rmax zmin zmax Rcap zwake

20 3.54931 1.0647 1.459 −0.636 0.531 1.617 2.468
50 2.93170 0.3518 1.700 −0.550 0.450 2.021 4.923

100 2.51511 0.1509 1.819 −0.499 0.357 2.433 7.304
200 2.10969 0.0633 1.927 −0.449 0.284 2.978 9.374

Table 2. Values of CD , Mo = 6 CD/Re, rmax, zmin, zmax, Rcap, and zwake for Ca =2 (We= 2 Re).

corresponding to the cusp formation at bubble rim, whereas zmin remains unchanged
corresponding to invariant general bubble shape and the centre of bubble volume.
The slightly reduced cap radius Rcap appears to relate to a slightly reduced value of
CD for Re � 50 with unchanged wake size reflected in zwake. A slight increase in CD

for Re= 20 from Ca =1 to 2 seems to correspond to the slight increase of the value
of zwake. But the value of zwake remains almost unchanged for Re � 50 with increasing
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Figure 5. Mesh around bubble surface of Re= 50 with different magnifications for (a),
(b) Ca = 1 (We= 50), and (c), (d) Ca = 2 (We= 100).

Ca from 1 to 2. For Re = 20 and Ca = 3 (We = 60), the values of CD , rmax, zmin, zmax,
Rcap, and zwake are 3.54861, 1.476, −0.633, 0.584, 1.631, and 2.543, respectively. In
general, the characteristic values in tables 1 and 2 as well as those for Re = 20 and
Ca =3 differ only by a few per cent, even with a substantial change in Ca (and
We). Hence the experimentally observed spherical-cap bubbles are expected to exhibit
behaviour basically independent of the value of Ca (or We) for Ca � 1 (or We � Re,
consistent with the conclusion of Bhaga & Weber (1981) that, for Mo > 4 × 10−3,
bubble behaviour only depends on Re), except for the localized surface curvature
increase at bubble rim and skirt formation at higher Ca.

4. Solutions of bubbles with various steady, axisymmetric shapes
Moving in a viscous liquid, a bubble may exhibit a variety of steady shapes

depending upon the values of Re and Ca (or We). For example, steady-state
solutions have been computed for spherical-cap bubbles in § 3 for relatively large



362 J. Q. Feng

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
–0.5

0

0.5

1.0

1.5

2.0

2.5

(a) Re = 200, We = 200

–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

(b)

(c) Re = 200, We = 400 (d)

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
–0.5

0

0.5

1.0

1.5

2.0

2.5

–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

Figure 6. Mesh around bubble surface of Re= 200 with different magnifications for (a),
(b) Ca = 1 (We=200), and (c), (d) Ca = 2 (We=400).

Ca (or We � Re), as often observed in the experiments (e.g. Davies & Taylor 1950;
Haberman & Morton 1953; Wegener & Parlange 1973; Bhaga & Weber 1981)
The disk-like and saucer-like bubbles were computed by many previous authors (cf.
Ryskin & Leal 1984; Christov & Volkov 1985; Sugiyama et al. 2001; Ohta et al. 2005),
usually at Ca 	 1 or We 	 Re. Ryskin & Leal (1984) suggested the possibility of
non-existence of steady axisymmetric bubbles above some critical values of We (for
Re � 50).

Now, let us focus attention on the steady-state solutions of We<Re computed
by reducing Ca in small steps at a fixed value of Re from the solutions of Ca = 1
(i.e. cases of We =Re in § 3.1). Up to Re =40, the bubble shape changes gradually
from that of a spherical cap to that of a sphere as Ca → 0 from 1. But at Re= 50,
reducing Ca from 1 corresponds to a decrease of local curvature around the bubble
rim at first (see figure 7a for Ca = 0.5), as intuitively expected. The bubble shape
becomes more fore–aft symmetric with continuously decreasing Ca, similar to that
found by Ryskin & Leal (1984) for Re= 50 and We= 10. As Ca approaches 0.280
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(a) Re = 50, We = 25.0 (b) Re = 50, We = 14.0

(c) Re = 50, We = 15.3 (d) Re = 50, We = 8.6

Figure 7. Bubble shapes and streamlines of solutions along the branch that connects the
spherical-cap bubble at Re= 50 for (a) Ca =0.500 (We= 25); (b) Ca = 0.280 (We= 14);
(c) Ca = 0.306 (We=15.3); (d) Ca = 0.172 (We= 8.6).

(We ∼ 14.0, figure 7b), however, a turning point is encountered where the Jacobian
matrix for the Newton iterations becomes singular, with rank deficiency of one. The
simple zeroth-order (or even more efficient first-order) continuation cannot be used
to compute solutions along the solution branch beyond the turning point. Further
continuation along the solution branch around turning points is enabled here by
employing an arclength continuation algorithm, based on that of Keller (1977).†
The solution branch folds back to increased value of Ca after this turning point,
with more enhanced ‘disk-like’ bubble deformation until another turning point is
encountered near Ca ∼ 0.306 (We ∼ 15.3, figure 7c), where the solution branch folds
towards decreased Ca again. But further continuation along this solution branch
no longer renders fore–aft-symmetric, disk-like bubble shapes; instead, the bubble
appears more like a sombrero at smaller Ca (e.g. figure 7d for Ca = 0.172). Yet
another turning point appears at Ca =0.172 (We = 8.60), where the solution branch
folds back to increased Ca. Stepping forward (with increasing Ca) leads to sombrero-
shaped bubbles with such distorted meshes that the accuracy of the numerical solution
becomes questionable. Therefore, the computations are not carried out much beyond
the turning point at Ca = 0.172 in the parameter space.

On the other hand, the solution branches computed by increasing Ca in small steps,
at a fixed value of Re � 50, from spherical bubble solutions at very small Ca, encounter

† Also exemplified by Boudouvis (1987) and Feng (2000).



364 J. Q. Feng

(a) Re = 50, We = 6.0 (b) Re = 50, We = 10.0

(c) Re = 50, We = 10.7 (d) Re = 50, We = 7.7

Figure 8. Bubble shapes and streamlines of solutions along the branch that connects to
the spherical bubble at Re= 50 for (a) Ca =8.333 (We= 6); (b) Ca =5.000 (We= 10);
(c) Ca = 4.673 (We= 10.7); (d) Ca = 6.494 (We= 7.7).

turning points at Ca slightly over 0.20, 0.10, and 0.05 (corresponding to We= 10)
for Re =50, 100, and 200, respectively. For example, at Re = 50 flow separation
clearly occurs when Ca = 0.12 (We = 6) (figure 8a), as Ryskin & Leal (1984) had
shown. At Ca = 0.20 the bubble takes a nearly fore–aft-symmetric disk-like shape
(figure 8b), also comparable to the result of Ryskin & Leal (1984) at We= 10.
With the present arclength continuation scheme, solutions beyond the turning point
at Ca = 0.2159 (We =10.7964) can be computed, although they are expected to be
unstable with respect to even axisymmetric disturbances. More flattened bubble
shapes and streamlines at Ca = 0.214 (We = 10.7 after the solution branch folds
back beyond the turning point towards lower We) are shown in figure 8(c). Further
continuation leads to the formation of doughnut-like bubble shapes with a hole
developing at the thinning centre (figure 8d for Ca =0.154 (We = 7.7)). Although
converged solutions can still be computed with further continuation, those solutions
correspond to unrealistic bubbles with the front stagnation point penetrating over the
rear surface of the bubble.

The solution branches for Re = 50 are plotted in figure 9 in the parameter space
of CD versus We, where the turning points are illustrated and parameter points for
solutions shown in figures 7 and 8 are indicated. For a given set of parameters, e.g.
Re and Ca (or We), multiple solutions may exist for steady, axisymmetric bubbles
corresponding to different values of drag coefficient CD . However, whether any of
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Figure 9. Solution branches in parameter space of CD versus We for Re= 50.

those predicted solutions of steady, axisymmetric bubbles can be observed in the
real-world experiments depends on their stability with respect to various types of
disturbances. General stability analysis requires consideration of three-dimensional
disturbances, which is beyond the scope of the present work.

The turning point on the branch extended from the spherical bubble, in the region
of relatively small We, indicates local non-existence of steady axisymmetric bubbles
above the critical value of We ( = 10.7964 for Re = 50), as Ryskin & Leal (1984)
speculated. The part of the branch beyond the turning point, folding back to lower
We, is expected to represent unstable steady-state solutions (cf. Iooss & Joseph 1990).
One of the interesting features described by this unstable part of the solution branch is
that bubble deformation increases with decreasing We, somewhat contrary to physical
intuition. Unstable solutions cannot be observed in real-world experiments. It should
be noted that local non-existence of steady axisymmetric bubbles above the critical
value of We does not mean global non-existence of steady axisymmetric bubbles.
It only suggests that any steady axisymmetric bubble that can be found above the
critical value of We would exhibit some discontinuities in the parameter space, and
therefore may not be obtained by the arclength continuation scheme with small
steps of parameter variations from the turning point. In fact, the global existence of
multiple steady states, and the existence of steady axisymmetric bubbles beyond the
critical value of We (with a jump, or discontinuity, of CD), can be observed in figure 9.

Some part of the branch extended from the spherical-cap bubble in the region of
relatively large We represents intuitively expected bubble behaviour, as the bubble
surface becomes less curved with decreasing We. But the part towards the low-We
end of this branch seems to describe bubbles with a more complicated sombrero
shape at smaller We, which has never been observed in experiments and therefore
could represent unstable solutions. Further, At Re ∼ 50, disk-like bubbles are shown
to appear around We ∼ 15 on the branch connecting to the spherical-cap bubble (as
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(a) Re = 100, We = 11.11 (b) Re = 200, We = 25

Figure 10. Bubble shapes and streamlines of (a) Re= 100 and Ca = 0.1111 (We=11.11);
(b) Re= 200 and Ca = 0.1250 (We= 25).

in figures 7b and 7c), besides that around the turning point on the branch in the
relatively small We region (as in figures 8b and 8c). Indeed, the disk-like bubble
observed by Bhaga & Weber (1981) for Re= 55.3 and We= 15.4 (in their figure 2c)
was reported to wobble as it rose, indicating the instability of strictly axisymmetric
bubbles.

For Re = 100, the solution branches in the parameter space of CD versus We appear
to be similar to that for Re =50. Now the turning point on the branch extended from
the spherical bubble in the small We region occurs at We= 10.0306, where the bubble
takes the saucer-like shape. Further continuation along this branch after it folds
back to lower We leads to the formation of doughnut-like bubbles (as in figure 8d).
The solution branch traced by reducing Ca from the spherical-cap bubble (e.g. at
Ca =1) eventually leads to the sombrero-shaped bubble, as shown in figure 10(a).
However, for Re= 200, reducing Ca from the spherical-cap bubble solution leads to a
bubble shape with more bumps on the front (as in figure 10b), instead of the sombrero
shape. But some of those complicated steady bubble shapes may serve to entertain
theoretical curiosity, until confirmed by carefully arranged experiments. Thoroughly
investigating the relationship and connectivities among those solutions associated
with the complicated bubble shapes seen in figure 10 can be a very tedious task, often
requiring frequent adjustment of mesh distributions for individual solutions to ensure
numerical accuracy and reliability. It is therefore not pursued in the present work
because the primary focus here is to search for conditions for steady, axisymmetric
solutions of spherical-cap bubbles at Re � 50, as observed in real-world experiments.

Most of the variations in bubble shape seem to occur in the region of Ca 	 1,
as found by continuation with reducing Ca from the spherical-cap bubble at a given
Re � 50. However, when the value of Ca is reduced to 0.5, bubbles appear still to
retain the spherical-cap shape, although the curvature at the bubble rim decreases
significantly (e.g. figure 7a). To provide a quantitative sense of change in spherical-cap
bubble behaviour, a set of characteristic values for Ca =0.5 such as CD , Rcap, etc., are
listed in table 3 for comparison with those at the corresponding Re for Ca = 1 and 2
in tables 1 and 2. The corresponding values in table 3 do not seem to vary from those
in table 1 by more than 10%, especially for Re � 50. The most noticeable change is
that the value of zwake at Re =20, indicating a reduced recirculating eddy, correlates
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Re CD Mo rmax zmin zmax Rcap zwake

20 3.24869 0.0152 1.368 −0.621 0.412 1.696 1.729
50 2.92719 5.49 × 10−3 1.596 −0.542 0.323 2.156 4.684

100 2.53297 2.37 × 10−3 1.712 −0.495 0.297 2.551 7.226
200 2.12460 9.96 × 10−4 1.819 −0.447 0.276 3.105 9.335

Table 3. Values of CD , Mo =(3/32)CD/Re, rmax, zmin, zmax, Rcap, and zwake for Ca = 0.5
(We= Re/2).

(a) Re = 50, We = 20 (b) Re = 100, We = 40

Figure 11. Bubble shapes and streamlines of (a) Re =50 and Ca = 0.4 (We= 20);
(b) Re =100 and Ca = 0.4 (We= 40).

with the reduced local surface curvature at the bubble rim (Batchelor 1967; Ryskin &
Leal 1984). However, the size of the recirculating eddy for Re � 50, at Ca = 0.5, does
not vary substantially, suggesting that at larger Re the convection effect could be
the dominant factor in determination of the recirculating eddy size. Even when Ca
is reduced to 0.4, the spherical-cap bubble shape may still be recognized, as shown
in figure 11 for Re = 50 and 100. For Re = 50 and Ca = 0.4 (We = 20), the values of
CD , rmax, zmin, zmax, Rcap, and zwake are 2.91665, 1.580, −0.536, 0.322, 2.251, and 4.602,
respectively. For Re =100 and Ca =0.4 (We = 40), the values of CD , rmax, zmin, zmax,
Rcap, and zwake are 3.52824, 1.690, −0.492, 0.298, 2.621, and 7.186, respectively. It is
noteworthy that the least-squares fitted Rcap here is quite accurate, with a variance
typically on the order of 10−5, indicating the front part of the bubble at Ca = 0.4 is
still very close to ‘a slice of a sphere’. But the rear part of the bubble appears to
start bulging from the rim due to increased surface tension effects and thereby loses
the flatness, as seen in classical spherical-cap bubble images. Thus, a conclusion may
be drawn that steady axisymmetric solutions of spherical-cap bubbles can exist for
Ca > 0.4, although the exact border line is difficult to define because the spherical-cap
shape is lost gradually with decreasing Ca. The basic characteristics of spherical-cap
bubbles (of Ca � 0.5 for a given Re � 50) are found almost independent of the value
of Ca (or We), as shown in tables 1–3.

5. Concluding remarks
The existence of steady, axisymmetric solutions for spherical-cap bubbles, especially

for Re � 50, is confirmed theoretically by using the Galerkin finite-element method
for solving the nonlinear, free-boundary problem. Continuation by increasing Re at
a fixed Ca (e.g. Ca =1) appears to be quite effective for computing spherical-cap
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bubbles.† The apparent cusp-like surface at the bubble rim, seemingly corresponding
to skirt formation, for various Re � 50, is shown to occur around Ca =2. This finding
compares very well with the skirt formation criterion of Ca ≈ 2.3 reported by Hnat
& Buckmaster (1976), based on their experimental data for Re> 50. By exploring the
parameter space, a sufficient condition for steady axisymmetric solutions of bubbles
with the spherical-cap shape is found to be Ca > 0.4, with some level of arbitrariness
in the definition of spherical-cap shape.

In computing the initial condition effect of bubble shape evolution, both Ohta
et al. (2005) and Bonometti & Magnaudet (2006) showed possibilities of obtaining
spherical-cap bubble at Re ∼ 250, 600, and 900 all with Ca < 0.4, seemingly to disprove
the condition of Ca > 0.4 for spherical-cap bubbles suggested by the present work.
However, many experiments indicated that truly steady spherical-cap bubbles may
only be realizable for Re < 200, beyond which the wake becomes unsteady (cf.
Wegener & Parlange 1973, Hnat & Buckmaster 1976, Bhaga & Weber 1981, who
even found that the wake becomes unsteady for Re > 110). Therefore, the exploration
of parameter space carried out here is confined to Re � 200. Moreover, the condition
suggested here for the steady spherical-cap bubble can only be regarded as a sufficient
(but not necessary) condition, namely, with no indication that bubbles of Ca < 0.4
cannot have a spherical-cap shape. Owing to the non-uniqueness of steady-state
solutions to the nonlinear equation system, conclusions can only be drawn based on
what has been found.

It is noteworthy that the spherical-cap bubble shape remains almost unchanged
for different Re (�50) at a given value of Ca (�0.5). In a large range of Re the
behaviour of spherical-cap bubbles seems to be mostly determined by Ca instead of
We, indicating the importance of local viscous effects even at Re ∼ 100. The boundary-
integral computations of Miksis, Vanden-Broeck & Keller (1981) for pure potential
flow past a deformable bubble could only predict fore–aft-symmetric bubble shapes
without flow separation in the wake. When viscous effects were approximately included
in the boundary-integral computations (yet still with flow separation ignored), the
bubble shape with rounded front surface and flat rear surface could be obtained by
increasing Mo (Miksis, Vanden-Broeck & Keller 1982), again suggesting the important
role of viscosity played in spherical-cap shape formation. Further evidence of non-
negligible viscous effects on spherical-cap bubbles is that flow separation at the
bubble rim is shown in the present computational results to always accompany a
spherical-cap bubble, as is experimental results in the literature.

Continuation at a fixed Re � 50 by increasing Ca (or We) from an infinitesimal
value, when the bubble takes a nearly spherical shape, cannot lead to the solutions of
spherical-cap bubbles, but rather to the turning points where the solution branch folds
back to reduced values of Ca (or We) corresponding to formation of doughnut-shaped
bubbles. These turning points at various Re seem to be primarily determined by the
value of We instead of Ca, because they all occur at We slightly above 10 (similar to
the findings of Feng & Basaran 1994 for supported two-dimensional bubbles). Thus,
the viscous effect on bubble shapes in the small We regime are not expected to be

† Without carrying out the actual computations, Ryskin & Leal (1984) speculated the possibility
of reaching spherical-cap bubble solutions of Re � 50 by increasing Re while holding We constant,
from the solution of spherical-cap bubble at Re= We= O(20). Based on the findings of the present
work, this approach may indeed be viable. However, the bubbles for Re> 50 at We= 20 may not
exhibit the classical spherical-cap shape. But they may lead to solutions of classical spherical-cap
bubbles by increasing We.
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important, in contrast to that on spherical-cap bubbles. This fundamental difference
may provide a phenomenological reason for the disconnectivity of solution branches
extended from solutions of spherical bubble and that from spherical-cap bubble
solutions for Re � 50.

But continuation at a fixed Re � 50 by reducing Ca (or We) from that for spherical-
cap bubbles, e.g. Ca = 1, tends to end up with complicated bubble shapes such as
sombreros, or with even more bumps on the front surface (cf. figure 10). The solution
branches extended from spherical-cap bubbles at relatively large Ca (∼1) do not
seem to connect to the spherical bubbles at small Ca (or We) for a fixed value of
Re. Even though multiple steady, axisymmetric solutions are shown to exist for a
given set of parameters, their stability with respect to arbitrary, three-dimensional
disturbances is not analysed within the present mathematical framework. Only stable
solutions are expected to be observed in laboratory experiments. Yet our intuitions
are mostly formed based on phenomena observed in the real world: hence, the
counter-intuitive trend that some of those steady, axisymmetric bubble shapes, with
complicated features becoming more pronounced with decreasing Ca, are likely to be
unstable.

Although the existence of steady axisymmetric solutions for spherical-cap bubbles
at Re � 50 is determined herewith (as a primary goal), the complicated solution
branch connectivities and a variety of steady axisymmetric bubble shapes, revealed
as a by-product of the present work in exploring the parameter space, suggest ample
interesting subjects for future investigations. To compute conveniently the solutions
for bubbles with complicated shapes, a more versatile mesh generation scheme is
desired, with somewhat automated adaptivities (e.g. as presented by Chen, Schunk &
Sackinger 1995 and Sackinger, Schunk & Rao 1996). A thorough analysis of the
solution connectivities and fold tracking in parameter space can be facilitated by
using the algorithms extensively described by Musson (2001) following the works
of Keller (1977), Stewart (1981), Chan (1984), etc. Then, the linear stability of the
steady axisymmetric solutions with respect to three-dimensional disturbances can be
analysed by solving the generalized eigenproblem as exemplified by Christodoulou
(1989) and Carvalho (1996). A stable steady axisymmetric solution should be
observable in laboratory experiments. However, the experimental realizability of a
steady axisymmetric bubble may also be challenged by its reachability from some
initial conditions, as demonstrated by Ohta et al. (2005), as well as Bonometti &
Magnaudet (2006), with transient simulations of initial-value problems, though
restricted to axisymmetric grids. Some experiments indicated that an unstable drop
may develop either oscillatory non-axisymmetric or axisymmetric behaviour (Grace,
Wairegi & Brophy 1978). The growth of axisymmetric disturbances that lead to drop
breakup in creeping flow was shown by experiments of Koh & Leal (1990) and by
the boundary-element analysis of Pozrikidis (1990). But whether the breakup mode
of bubbles at Re � O(10) can be axisymmetric remains as an open question.

The author would like to thank Professor L. E. (Skip) Scriven for helpful suggestions
as well as encouragement during the course of this work. Many valuable and
constructive comments from Dr P. Keith Watson and the referees helped improve the
quality of the presentation and therefore are highly appreciated.
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